x^a $(1-x)^{b} + x^{b}$ $(1-x)^{a} \leq 1/2^{(a+b-1)}$ for $0 \leq x \leq 1$. https://www.linkedin.com/groups/8313943/8313943-6184678772822798338 Let *a* and *b* be positive real numbers satisfying $a + b \geq (a - b)^{2}$. Prove that $x^{a}(1-x)^{b} + x^{b}(1-x)^{a} \leq (1/2)^{a+b-1}$ for $0 \leq x \leq 1$, with equality if and only if x = 1/2**Solution by Arkady Alt**, **San Jose, California, USA**.

Since $x^a(1-x)^b + x^b(1-x)^a \le (1/2)^{a+b-1} \Leftrightarrow (2x)^a(2-2x)^b + (2x)^b(2-2x)^a \le 2$ then assuming $a \le b$ (due symmetry of inequality) and, denoting t := 1 - 2x, h := b - a, we can rewrite original problem in the following,more convenient for further, equivalent form:

Let a and h be real numbers such that $a > 0, h \ge 0$ and $a \ge \frac{h(h-1)}{2}$. Prove that

(1) $(1-t^2)^a((1+t)^h + (1-t)^h) \le 2$ for $|t| \le 1$, with equality if and only if x = 0.

Note that we can assume that h > 1, because otherwice, if $h \le 1$ then by PM-AM inequality

$$\left(\frac{(1+t)^{h}+(1-t)^{h}}{2}\right)^{1/h} \le \frac{(1+t)+(1-t)}{2} = 1 \iff (1+t)^{h}+(1-t)^{h} \le 2 \text{ and, since}$$
$$(1-t^{2})^{a} \le 1, \text{ we obtain } (1-t^{2})^{a}((1+t)^{h}+(1-t)^{h}) \le 2. \text{ So, let now } h > 1$$

Since left hand side of inequality (1) is even function of *t* and equal to zero if t = 1 we can

for further assume that $t \in [0,1)$ and rewrite inequality as (2) $(1+t)^h + (1-t)^h \le 2(1-t^2)^{-a}$, a > 0 and h > 1. Using binomial series for $(1-t^2)^{-a}$, $(1+t)^h$, $(1-t)^h$ we obtain

$$(1-t^2)^{-a} = 1 + \sum_{n=1}^{\infty} a_n t^{2n}$$
 and $(1+t)^h + (1-t)^h = 2\left(1 + \sum_{n=1}^{\infty} b_n t^{2n}\right)$, where
 $a_n := (-1)^n {\binom{-a}{n}} = \frac{a(a+1)\dots(a+n-1)}{n!}$ and $b_n := {\binom{h}{2n}} = \prod_{k=1}^n \frac{(h-2k+2)(h-2k+1)}{(2k-1)2k}$,

Thus, inequality (2) becomes $\sum_{n=1}^{\infty} a_n t^{2n} \le \sum_{n=1}^{\infty} b_n t^{2n}$ and remains to prove that $a_n \le b_n$ for

any $n \in \mathbb{N}$.

Since a > 0 then $a_n > 0$ for any $n \in \mathbb{N}$. But behavior of the sign b_n is more complicated. If $h \in (2m - 1, 2m)$ for some natural $m \ge 2$ then $b_n > 0$ for any $n \in \mathbb{N}$ because (h - 2k + 2)(h - 2k + 1) > 0 for any $k \in \mathbb{N}$; If $h \in [2m, 2m + 1]$ then $b_n > 0$ for any $n \le m$ and $b_n \le 0$ for any n > m because $(h - 2m)(h - 2m - 1) \le 0$ and (h - 2k + 2)(h - 2k + 1) > 0 for any k > m. In that case

suffice to prove that $a_n \ge b_n$ for any $n \le m$. Let $I(h) := \mathbb{N}$ if $h \in (2m - 1, 2m)$ and $I(h) = \{1, 2, ..., m\}$ if $h \in [2m, 2m + 1]$

We will prove that $a_n \ge b_n$ for any $n \in I(h)$ using Math Induction with base $a_1 \ge b_1 \iff a \ge \frac{h(h-1)}{2}$.

Step of Math Induction:

For any $n \in I(h)$ and $n \ge 2$ let $a_{n-1} \ge b_{n-1}$. We will prove that

$$\frac{a_n}{a_{n-1}} \ge \frac{b_n}{b_{n-1}} \Leftrightarrow \frac{(-1)^n \binom{-a}{n}}{(-1)^{n-1} \binom{-a}{n-1}} \ge \frac{\binom{h}{2n}}{\binom{h}{2n-2}} \Leftrightarrow$$

$$\frac{a+n-1}{n} \ge \frac{(h-2n+2)(h-2n+1)}{2n(2n-1)} \iff a+n-1 \ge \frac{(h-2n+2)(h-2n+1)}{2(2n-1)}.$$

Since $a \ge \frac{h(h-1)}{2}$ we have $a+n-1 - \frac{(h-2n+2)(h-2n+1)}{2(2n-1)} \ge \frac{h(h-1)}{2} + n-1 - \frac{(h-2n+2)(h-2n+1)}{2(2n-1)} = \frac{h(h+1)(n-1)}{2n-1} > 0.$
Hence, $a_n = a_{n-1} \cdot \frac{a_n}{a_{n-1}} \ge b_{n-1} \cdot \frac{b_n}{b_{n-1}} = b_n.$