$x^{a} \quad(1-x)^{b} \quad+x^{b} \quad(1-x)^{a} \quad \leq 1 / 2^{\wedge}(a+b-1)$ for $0 \leq x \leq 1$.
https://www.linkedin.com/groups/8313943/8313943-6184678772822798338
Let a and b be positive real numbers satisfying $a+b \geq(a-b)^{2}$. Prove that $x^{a}(1-x)^{b}+x^{b}(1-x)^{a} \leq(1 / 2)^{a+b-1}$ for $0 \leq x \leq 1$, with equality if and only if $x=1 / 2$

Solution by Arkady Alt, San Jose, California, USA.

Since $x^{a}(1-x)^{b}+x^{b}(1-x)^{a} \leq(1 / 2)^{a+b-1} \Leftrightarrow(2 x)^{a}(2-2 x)^{b}+(2 x)^{b}(2-2 x)^{a} \leq 2$ then assuming $a \leq b$ (due symmetry of inequality) and, denoting $t:=1-2 x, h:=b-a$, we can rewrite original problem in the following, more convenient for further, equivalent form:
Let a and h be real numbers such that $a>0, h \geq 0$ and $a \geq \frac{h(h-1)}{2}$. Prove that
(1) $\quad\left(1-t^{2}\right)^{a}\left((1+t)^{h}+(1-t)^{h}\right) \leq 2$ for $|t| \leq 1$, with equality if and only if $x=0$.

Note that we can assume that $h>1$, because otherwice, if $h \leq 1$ then by PM-AM inequality
$\left(\frac{(1+t)^{h}+(1-t)^{h}}{2}\right)^{1 / h} \leq \frac{(1+t)+(1-t)}{2}=1 \Leftrightarrow(1+t)^{h}+(1-t)^{h} \leq 2$ and, since
$\left(1-t^{2}\right)^{a} \leq 1$, we obtain $\left(1-t^{2}\right)^{a}\left((1+t)^{h}+(1-t)^{h}\right) \leq 2$. So, let now $h>1$
Since left hand side of inequality (1) is even function of t and equal to zero if $t=1$ we can
for further assume that $t \in[0,1)$ and rewrite inequality as
(2) $(1+t)^{h}+(1-t)^{h} \leq 2\left(1-t^{2}\right)^{-a}, a>0$ and $h>1$.

Using binomial series for $\left(1-t^{2}\right)^{-a},(1+t)^{h},(1-t)^{h}$ we obtain
$\left(1-t^{2}\right)^{-a}=1+\sum_{n=1}^{\infty} a_{n} t^{2 n}$ and $(1+t)^{h}+(1-t)^{h}=2\left(1+\sum_{n=1}^{\infty} b_{n} t^{2 n}\right)$, where
$a_{n}:=(-1)^{n}\binom{-a}{n}=\frac{a(a+1) \ldots(a+n-1)}{n!}$ and $b_{n}:=\binom{h}{2 n}=\prod_{k=1}^{n} \frac{(h-2 k+2)(h-2 k+1)}{(2 k-1) 2 k}$,
Thus, inequality (2) becomes $\sum_{n=1}^{\infty} a_{n} t^{2 n} \leq \sum_{n=1}^{\infty} b_{n} t^{2 n}$ and remains to prove that $a_{n} \leq b_{n}$ for any $n \in \mathbb{N}$.

Since $a>0$ then $a_{n}>0$ for any $n \in \mathbb{N}$. But behavior of the sign b_{n} is more complicated. If $h \in(2 m-1,2 m)$ for some natural $m \geq 2$ then $b_{n}>0$ for any $n \in \mathbb{N}$ because $(h-2 k+2)(h-2 k+1)>0$ for any $k \in \mathbb{N}$;
If $h \in[2 m, 2 m+1]$ then $b_{n}>0$ for any $n \leq m$ and $b_{n} \leq 0$ for any $n>m$ because
$(h-2 m)(h-2 m-1) \leq 0$ and $(h-2 k+2)(h-2 k+1)>0$ for any $k>m$. In that case
suffice to prove that $a_{n} \geq b_{n}$ for any $n \leq m$.
Let $I(h):=\mathbb{N}$ if $h \in(2 m-1,2 m)$ and $I(h)=\{1,2, . ., m\}$ if $h \in[2 m, 2 m+1]$
We will prove that $a_{n} \geq b_{n}$ for any $n \in I(h)$ using Math Induction with base $a_{1} \geq b_{1} \Leftrightarrow a \geq \frac{h(h-1)}{2}$.

Step of Math Induction:
For any $n \in I(h)$ and $n \geq 2$ let $a_{n-1} \geq b_{n-1}$. We will prove that
$\frac{a_{n}}{a_{n-1}} \geq \frac{b_{n}}{b_{n-1}} \Leftrightarrow \frac{(-1)^{n}\binom{-a}{n}}{(-1)^{n-1}\binom{-a}{n-1}} \geq \frac{\binom{h}{2 n}}{\binom{h}{2 n-2}} \Leftrightarrow$

$$
\frac{a+n-1}{n} \geq \frac{(h-2 n+2)(h-2 n+1)}{2 n(2 n-1)} \Leftrightarrow a+n-1 \geq \frac{(h-2 n+2)(h-2 n+1)}{2(2 n-1)} .
$$

Since $a \geq \frac{h(h-1)}{2}$ we have $a+n-1-\frac{(h-2 n+2)(h-2 n+1)}{2(2 n-1)} \geq$

$$
\frac{h(h-1)}{2}+n-1-\frac{(h-2 n+2)(h-2 n+1)}{2(2 n-1)}=\frac{h(h+1)(n-1)}{2 n-1}>0 .
$$

Hence, $a_{n}=a_{n-1} \cdot \frac{a_{n}}{a_{n-1}} \geq b_{n-1} \cdot \frac{b_{n}}{b_{n-1}}=b_{n}$.

